Least Squares Problems with Absolute Quadratic Constraints
نویسندگان
چکیده
منابع مشابه
Least Squares Problems with Absolute Quadratic Constraints
This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein’s conic-fitting and Fitzgibbon’s direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem...
متن کاملLeast squares problems with inequality constraints as quadratic constraints
Linear least squares problems with box constraints are commonly solved to find model parameters within bounds based on physical considerations. Common algorithms include Bounded Variable Least Squares (BVLS) and the Matlab function lsqlin. Here, we formulate the box constraints as quadratic constraints, and solve the corresponding unconstrained regularized least squares problem. Box constraints...
متن کاملSparse Optimization with Least-Squares Constraints
The use of convex optimization for the recovery of sparse signals from incomplete or compressed data is now common practice. Motivated by the success of basis pursuit in recovering sparse vectors, new formulations have been proposed that take advantage of different types of sparsity. In this paper we propose an efficient algorithm for solving a general class of sparsifying formulations. For sev...
متن کاملRecursive least squares with linear constraints
Recursive Least Squares (RLS) algorithms have wide-spread applications in many areas, such as real-time signal processing, control and communications. This paper shows that the unique solutions to linear-equality constrained and the unconstrained LS problems, respectively, always have exactly the same recursive form. Their only difference lies in the initial values. Based on this, a recursive a...
متن کاملSparse Optimization with Least - Squares Constraints Ewout
The use of convex optimization for the recovery of sparse signals from incomplete or compressed data is now common practice. Motivated by the success of basis pursuit in recovering sparse vectors, new formulations have been proposed that take advantage of different types of sparsity. In this paper we propose an efficient algorithm for solving a general class of sparsifying formulations. For sev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2012
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2012/312985